使用 Python 实现一个简单的图像分类器

47分钟前 5阅读

在深度学习领域,图像分类是一个非常基础且重要的任务。它旨在根据输入的图像内容将其归类到预定义的类别中。本文将介绍如何使用 Python 和流行的深度学习框架 PyTorch 来构建一个简单的图像分类器。

我们将使用经典的 CIFAR-10 数据集进行训练和测试。该数据集包含 60,000 张 32x32 彩色图像,分为 10 个类别(如飞机、汽车、鸟等)。

环境准备

首先确保你已经安装了以下库:

pip install torch torchvision matplotlib

步骤一:导入必要的库

import torchimport torch.nn as nnimport torch.optim as optimimport torchvisionimport torchvision.transforms as transformsfrom torch.utils.data import DataLoaderimport matplotlib.pyplot as plt

步骤二:加载并预处理 CIFAR-10 数据集

我们使用 torchvision.datasets.CIFAR10 来下载并加载数据集,并对图像进行标准化处理。

# 图像预处理:将像素值从 [0, 1] 映射到 [-1, 1]transform = transforms.Compose([    transforms.ToTensor(),    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# 加载训练集和测试集train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,                                              download=True, transform=transform)test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,                                             download=True, transform=transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)classes = ('plane', 'car', 'bird', 'cat',           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

我们可以先可视化一些训练图像来确认是否正确加载。

def imshow(img):    img = img / 2 + 0.5     # 反标准化    npimg = img.numpy()    plt.imshow(np.transpose(npimg, (1, 2, 0)))    plt.show()# 获取一批训练图像dataiter = iter(train_loader)images, labels = next(dataiter)# 展示图像imshow(torchvision.utils.make_grid(images))print(' '.join(f'{classes[labels[j]]}' for j in range(4)))

步骤三:构建神经网络模型

我们使用一个简单的卷积神经网络(CNN)来进行图像分类。

class SimpleCNN(nn.Module):    def __init__(self):        super(SimpleCNN, self).__init__()        self.conv1 = nn.Conv2d(3, 6, 5)        self.pool = nn.MaxPool2d(2, 2)        self.conv2 = nn.Conv2d(6, 16, 5)        self.fc1 = nn.Linear(16 * 5 * 5, 120)        self.fc2 = nn.Linear(120, 84)        self.fc3 = nn.Linear(84, 10)    def forward(self, x):        x = self.pool(torch.relu(self.conv1(x)))        x = self.pool(torch.relu(self.conv2(x)))        x = torch.flatten(x, 1)        x = torch.relu(self.fc1(x))        x = torch.relu(self.fc2(x))        x = self.fc3(x)        return xnet = SimpleCNN()

步骤四:定义损失函数和优化器

我们使用交叉熵损失函数(CrossEntropyLoss)和随机梯度下降(SGD)作为优化器。

criterion = nn.CrossEntropyLoss()optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

步骤五:训练模型

我们只训练几个 epoch(轮次),以快速验证流程。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")net.to(device)for epoch in range(2):  # 多次遍历数据集    running_loss = 0.0    for i, data in enumerate(train_loader, 0):        inputs, labels = data[0].to(device), data[1].to(device)        optimizer.zero_grad()        outputs = net(inputs)        loss = criterion(outputs, labels)        loss.backward()        optimizer.step()        running_loss += loss.item()        if i % 200 == 199:    # 每200个小批量打印一次            print(f'[Epoch {epoch + 1}, Batch {i + 1}] Loss: {running_loss / 200:.3f}')            running_loss = 0.0print('Finished Training')

步骤六:测试模型性能

我们计算模型在测试集上的准确率。

correct = 0total = 0with torch.no_grad():    for data in test_loader:        images, labels = data[0].to(device), data[1].to(device)        outputs = net(images)        _, predicted = torch.max(outputs.data, 1)        total += labels.size(0)        correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')

步骤七:查看每类的分类准确率

class_correct = list(0. for i in range(10))class_total = list(0. for i in range(10))with torch.no_grad():    for data in test_loader:        images, labels = data[0].to(device), data[1].to(device)        outputs = net(images)        _, predicted = torch.max(outputs, 1)        c = (predicted == labels).squeeze()        for i in range(4):            label = labels[i]            class_correct[label] += c[i].item()            class_total[label] += 1for i in range(10):    print(f'Accuracy of {classes[i]} : {100 * class_correct[i] / class_total[i]:.2f}%')

总结

在本篇文章中,我们使用 PyTorch 构建了一个简单的 CNN 模型,并在 CIFAR-10 数据集上进行了训练与评估。虽然这个模型较为简单,但它展示了图像分类的基本流程:数据加载与预处理、模型构建、训练、评估。

你可以尝试改进模型结构(例如使用 ResNet、VGG 等经典网络)、增加训练轮数、调整超参数等方式进一步提高准确率。


附录:完整代码

import torchimport torch.nn as nnimport torch.optim as optimimport torchvisionimport torchvision.transforms as transformsfrom torch.utils.data import DataLoaderimport matplotlib.pyplot as plt# 数据预处理transform = transforms.Compose([    transforms.ToTensor(),    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# 加载数据集train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 展示图像def imshow(img):    img = img / 2 + 0.5    npimg = img.numpy()    plt.imshow(np.transpose(npimg, (1, 2, 0)))    plt.show()dataiter = iter(train_loader)images, labels = next(dataiter)imshow(torchvision.utils.make_grid(images))print(' '.join(f'{classes[labels[j]]}' for j in range(4)))# 定义网络class SimpleCNN(nn.Module):    def __init__(self):        super(SimpleCNN, self).__init__()        self.conv1 = nn.Conv2d(3, 6, 5)        self.pool = nn.MaxPool2d(2, 2)        self.conv2 = nn.Conv2d(6, 16, 5)        self.fc1 = nn.Linear(16 * 5 * 5, 120)        self.fc2 = nn.Linear(120, 84)        self.fc3 = nn.Linear(84, 10)    def forward(self, x):        x = self.pool(torch.relu(self.conv1(x)))        x = self.pool(torch.relu(self.conv2(x)))        x = torch.flatten(x, 1)        x = torch.relu(self.fc1(x))        x = torch.relu(self.fc2(x))        x = self.fc3(x)        return xnet = SimpleCNN()device = torch.device("cuda" if torch.cuda.is_available() else "cpu")net.to(device)# 损失函数和优化器criterion = nn.CrossEntropyLoss()optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)# 训练模型for epoch in range(2):    running_loss = 0.0    for i, data in enumerate(train_loader, 0):        inputs, labels = data[0].to(device), data[1].to(device)        optimizer.zero_grad()        outputs = net(inputs)        loss = criterion(outputs, labels)        loss.backward()        optimizer.step()        running_loss += loss.item()        if i % 200 == 199:            print(f'[Epoch {epoch + 1}, Batch {i + 1}] Loss: {running_loss / 200:.3f}')            running_loss = 0.0print('Finished Training')# 测试模型correct = 0total = 0with torch.no_grad():    for data in test_loader:        images, labels = data[0].to(device), data[1].to(device)        outputs = net(images)        _, predicted = torch.max(outputs.data, 1)        total += labels.size(0)        correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')# 查看各类别准确率class_correct = list(0. for i in range(10))class_total = list(0. for i in range(10))with torch.no_grad():    for data in test_loader:        images, labels = data[0].to(device), data[1].to(device)        outputs = net(images)        _, predicted = torch.max(outputs, 1)        c = (predicted == labels).squeeze()        for i in range(4):            label = labels[i]            class_correct[label] += c[i].item()            class_total[label] += 1for i in range(10):    print(f'Accuracy of {classes[i]} : {100 * class_correct[i] / class_total[i]:.2f}%')

如果你有兴趣深入学习计算机视觉或深度学习,欢迎继续关注我的后续文章!

免责声明:本文来自网站作者,不代表CIUIC的观点和立场,本站所发布的一切资源仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容。如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。客服邮箱:ciuic@ciuic.com

目录[+]

您是本站第58503名访客 今日有28篇新文章

微信号复制成功

打开微信,点击右上角"+"号,添加朋友,粘贴微信号,搜索即可!